

Technical features

Power supply

Three-phase voltage 127/220V 50Hz, 200/346V 50Hz, or 210/363V 60 Hz; suitable for use with an inverter from 20Hz to the base frequency with constant torque load profile.

Polarity

2 poles.

Conformity with European Directives

Low Voltage 2006/95/EC, ATEX 94/9/EC.

Reference Regulations

IEC/EN 60079-0, IEC/EN 60079-7, IEC/EN 61241-0, IEC/EN 61241-1, EN 60034-1.

Controls

The components that affect protection are 100% accurately controlled and recorded.

Functioning

Continual service (S1) at maximum declared centrifugal force and electric power. Intermittent services are also possible depending on the type of vibrator and the operating conditions. For detailed information contact our technical assistance office.

Centrifugal force

Range up to 311 kgf (3.05 kN). Centrifugal force can be changed by adjusting the eccenctric weights.

Mechanical protection

IP 66 according to IEC 529, EN 60529.

Protection against mechanical impacts

IK 08 according to IEC 68, EN 50102.

Insulation class

Class F (155°C).

Tropicalization

Standard with vacuum encapsulation.

Ambient temperature

From -10°C to +40°C, on request it is possible to have vibrators for max. ambient temperatures of +55°C.

Vibrator thermal protection

On request with PTC thermistor rated heat detectors 130°C (DIN 44081-44082).

Fixing of the vibrator

In all positions and therefore without restriction. The terminal box is positioned underneath the vibrator, on the same side as the fixing base.

Lubrication

Sealed ball bearing, lubricated "for life".

Terminal box

The terminal box is positioned underneath the vibrator, on the same side as the fixing base. Special shaped terminals allow to fix the power supply cable, protecting it from loosening.

Electric motor

Three-phase asynchronous type. Insulated windings using vacuum encapsulating. The rotor is die cast aluminium.

Casing

In high-tensile aluminium alloy, with sand-blasted surface.

Bearing flange

In ductile cast iron. The geometry of the flange transmits the load to the casing uniformly.

Motor shaft

In treated steel alloy (Isothermic hardening) resistant to stress.

Eccentric weights

Easily adjustable from 100% down to 0.

Weight covers

Made in die cast, high strength alluminum alloy with accurate surface sand blasting.

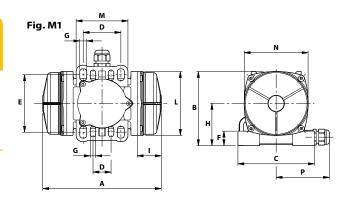
Other features

For the M3-E series, the user must fill the terminal box with suitable silicone, after having performed the connection.

2 poles - 3000/3600 rpm

	Description			Mechanical specifications								Electrical specifications									
	Code	Type SIZE	Sta mom kgr 50 Hz			Centrifu g 60 Hz	i gal force k 50 Hz	e N 60 Hz		ight :g 60 Hz	Temp. class (G)	Temp. class (D)	po	input wer N 60 Hz	Por rat \ 50 Hz	wer ing N 60 Hz	Max. c 400 V 50 Hz	urrent 4 460 V 60 Hz	t _E (s)	Ia/In	
se	600467	M3/65-E-S02	00	6.43	6.43	64.7	93.1	0.635	0.913	4.3	4.3	– – T4 –	120°C	105	5 105	80	80	0.30	0.29	20	3.48
-bha	600465	M3/105-E-S02	00	9.64	9.64	97.0	140	0.950	1.37	5.2	5.2										3.68
hree	600462	M3/205-E-S02	00	21.0	21.0	211	304	2.07	2.98	6.0	6.0										3.68
	600461	M3/305-E-S02	00	31.0	21.0	311	304	3.05	2.98	6.3	6.0										3.68

^{*} Working moment = 2 x static moment. $t_E(s) = set time t_E from IEC/EN 60079-7$. $I_A/I_N = ratio between start-up current and maximum current.$



2 poles - 3000/3600 rpm

			Dimensional specifications (mm) Multi-hole Holes														
	Туре	Fig.	Α	В	c	D	E	øG	N°	F	н	1	L	М	М	Cable entry thread	
three-phase	M3/65-E-S02	М1	197		127	30 - 60 65 - 62	85 - 100 85 - 106	9	4	24	70	40	· 106	86	106	M20x1,5	
	M3/105-E-S02	М1	211	100								47					
	M3/205-E-S02	M1	235	- 123								59					
	M3/305-E-S02	M1	235	-								59					

