Selection table for free oscillating systems (with unbalanced excitation)

		One mass system circular motion screen	One mass system linear motion screen	Two mass system with counterframe	One mass system linear motion screen hanging
	$\begin{gathered} \text { AB } \\ \text { Page } \end{gathered}$ 2.11	Oscillating Mounting - universal mounting. High vibration isolation and low residual force transmission. Natural frequencies approx. $2-3 \mathrm{~Hz}$. 9 sizes from 50 N to $20^{\prime} 000 \mathrm{~N}$ per AB .			
	AB-HD Page 2.12	Oscillating Mounting for impact loading and high production peaks. (Heavy Duty) Natural frequencies approx. $2.5-3.5 \mathrm{~Hz}$. 6 sizes from 500 N to $14^{\prime} 000 \mathrm{~N}$ per AB-HD.			
	AB-D Page 2.13		Oscillating Mounting in compact design. Optimal in two mass systems as counterframe mounting. Natural frequencies approx. $3-4.5 \mathrm{~Hz}$. 7 sizes from 500 N to $16^{\prime} 000 \mathrm{~N}$ per AB-D.		
	ABI Page 2.14	Oscillating Mounting made from stainless steel for the food and pharmaceutical industry. High vibration isolation and low residual force transmission. Natural frequencies approx. $2-3 \mathrm{~Hz}$. 6 sizes from 70 N to $6^{\prime} 800 \mathrm{~N}$ per ABI.			
	$\begin{gathered} \text { HS } \\ \text { Page } \\ 2.15 \end{gathered}$				Oscillating Mounting for hanging systems. Natural frequencies approx. $3-4 \mathrm{~Hz}$. 5 sizes from 500 N to $14^{\prime} 000 \mathrm{~N}$ per HS .

Selection table for gyratory sifters

ROSTA

Technology

Design layout and evaluation

Subject	Symbol	- Example
Mass of the empty channel and drive	m_{0}	680 kg
Products on the channel		200 kg
of which approx. 50\% coupling*		100 kg
Total vibrating mass*	m	780 kg
Mass distribution: feed end	\% feed end	33\%
	\%discharge end	67\%
Acceleration due to gravity	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Load per corner feed end	Ffeed end	1263 N
Load per corner discharge end	F discharge end	2563 N
- Element choice in example		6x AB 38
Working torque of both drives	AM	600 kgcm
Oscillating stroke empty channel	swo	8.8 mm
Oscillating stroke in operation	sw	7.7 mm
Motor revolutions	$\mathrm{n}_{\text {s }}$	960 rpm
Centrifugal force of both drives	Fz	$30^{\prime} 319 \mathrm{~N}$
Oscillating machine factor	K	4.0
Machine acceleration	$a=K \cdot g$	4.0 g
- Natural frequency suspensions	fe	2.7 Hz
Degree of isolation	W	97\%

Calculation formulas

Loading per corner

$$
F_{\text {feed-end }}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \% \text { feed-end }}{2 \cdot 100} \quad \mathrm{~F}_{\text {discharge-end }}=\frac{\mathrm{m} \cdot \mathrm{~g} \cdot \% \text { discharge-end }}{2 \cdot 100}
$$

Oscillating stroke (Amplitude peak to peak)

$$
s W_{0}=\frac{A M}{m_{0}} \cdot 10 \quad s W=\frac{A M}{m} \cdot 10
$$

Centrifugal force

$$
F_{z}=\frac{\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot A M \cdot 10}{2 \cdot 1000}=\frac{n_{s}^{2} \cdot A M}{18^{\prime} 240}
$$

Oscillating machine factor

$K=\frac{\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot s w}{2 \cdot g \cdot 1000}=\frac{n_{s}^{2} \cdot s w}{1^{\prime} 789^{\prime} 000}$

* The following has to be observed for the determination of the coupling effect and material flow:
- High coupling or sticking of humid bulk material
- Channel running full
- Fully stacked screen deck with humid material
- Weight distribution with and without conveyed material
- Centrifugal force does not run through the center of gravity (channel full or empty)
- Sudden impact loading occurs
- Subsequent additions to the screen structure (e.g. additional screening deck)

Technology

Determination of the average material conveying speed vm

Main influencing factors:

- Conveying ability of the material
- Height of the bulk goods
- Screen box inclination
- Position of unbalanced motors
- Position of the center of gravity

The material speed on circular motion screens does vary, due to differing screen-box inclination angles.

- Example:

The horizontal line out of the intercept point of stroke (7.7 mm) and motor revolutions (960 rpm) is indicating an average theoretical speed of $12.3 \mathrm{~m} / \mathrm{min}$ or $20.5 \mathrm{~cm} / \mathrm{sec}$.

Resonance amplification and continuous running

At the screen start-up and run-out the suspension elements are passing through the resonance frequency. By the resulting amplitude superelevation the four rubber suspensions in the $A B$ mountings do generate a high level of damping which is absorbing the remaining energy after only a few strokes. The screen box stops its motion within seconds.

Laboratory measurements of a typical development of the residual forces on a ROSTA screen suspension:

Alignment of the elements

If the suspensions for linear motion screens are arranged as shown on page 2.7, a harmonic, noiseless oscillation of the screen will result. The rocker arm fixed to the screen carries out the greater part of the oscillations. The rocker arm fixed to the substructure remains virtually stationary and ensures a low natural frequency, and thereby also a good vibration isolation. The mounting axis has to be arranged to be at right angles $\left(90^{\circ}\right)$ to the conveying axis, with maximum tolerance of $\pm 1^{\circ}$.

Deflection curves and cold flow behaviours

Diagrams showing the vertical deflection \mathbf{s} (in mm) by compression or tensile load G (in kN). The shown values comprehend the initial cold flow settling after one day of operation. The final element deflection after the full cold flow compensation (after approx. 1 year) is usually factor x 1,09 higher (depending on specific application, climate etc.).

Final element deflection

$=\mathbf{s} \times 1,09$

The deflection values are based on our catalogue specifications and should be understood as approximate values. Please consult also our tolerance specifications in chapter "Technology" in the general catalogue.

www.rosta.com

Oscillating Mountings

Type HS

Art. No.	Type	Load capacity Gmin. - Gmax. [N]		$\begin{aligned} & \mathrm{A}^{*} \\ & \text { max. } \\ & \text { load } \end{aligned}$		B^{*} max. load	C	D	E	F	H	K	L	M	N	Weight [kg]
07311001	HS 27	$500-1 ' 250$	164	202	84	68	70	11	80	105	4.5	17	60	80	35	1.6
07311002	HS 38	1'200-2'500	223	275	114	92	95	13	100	125	6	21	80	104	40	4.9
07311003	HS 45	2'000 - 4'200	265	325	138	113	110	13×20	115	145	8	28	100	132	65	11.3
07311004	HS 50	3'500 - 8'400	288	357	148	118	120	17×27	130	170	12	40	120	165	60	20.2
07311005	HS 50-2	6'000-14'000	288	357	148	118	120	17×27	130	170	12	45	200	250	70	34.0

c
 for HS 50 according 2006/42/EG (hanging load bearing capacities)

The HS Mountings shall be fastened with the foreseen amount of screws (existing fixation holes or slots) of quality 8.8 with consideration of the prescribed fastening torque.

These types can be combined with one another (identical heights and operation behaviour)

* tensile load Gmax. and final cold flow compensation (after approx. 1 year).
** separate assembly instructions are available, please ask for details.

