Selection table for guided systems (crank driven)

One mass shaker "brute-force" system	One mass shaker "natural frequency" system	Two mass shaker "fast-runner" system with reaction force-compensation		
Single Rocker with adjustable length. Models with right-hand and left-hand threads. 7 sizes up to $5^{\prime} 000 \mathrm{~N}$ per rocker suspension.			$\begin{gathered} \text { AU } \\ \text { Page } \\ 2.25 \end{gathered}$	
Single Rocker with decided center distance. 6 sizes up to $2^{\prime} 500 \mathrm{~N}$ for flange fixation. 6 sizes up to $2^{\prime} 500 \mathrm{~N}$ for central fixation.			$\begin{aligned} & \text { AS-P } \\ & \text { AS-C } \\ & \text { Page } \\ & 2.26 \end{aligned}$	
		Double Rocker with decided center distance. 5 sizes up to $2^{\prime} 500 \mathrm{~N}$ for flange fixation. 4 sizes up to $1^{1} 600 \mathrm{~N}$ for central fixation.	$\begin{aligned} & \text { AD-P } \\ & \text { AD-C } \\ & \text { Page } \\ & 2.27 \end{aligned}$	
Single Rocker with adjustable length. Models with right-hand and left-hand threads. 7 sizes up to $5^{\prime} 000 \mathrm{~N}$ per rocker suspension.			$\begin{gathered} \text { AR } \\ \text { Page } \\ 2.28 \end{gathered}$	

Drive Head for crank drive transmission in shaker conveyors.
Models with right-hand and left-hand threads.
9 sizes up to $27^{\prime} 000 \mathrm{~N}$ per drive head.

\square Spring Accumulator with high dynamic spring value for feeder systems
running close to resonance frequency.
A spring accumulator consists of 2 DO-A elements.
DO-A
Page
5 sizes up to dynamic spring value of $320 \mathrm{~N} / \mathrm{mm}$.

Notes regarding some special shaker systems:

- For free oscillating systems on pages 2.16-2.19
- For guided systems on pages 2.31-2.33
- For gyratory sifters on page 2.34

Technology

1. One mass systems without spring accumulators: Calculation

	Subject	Symbol	Example
	Trough length Weight empty trough Weight of feeding material Material coupling factor 50\% * Weight of oscillating mass *	L mo m_{m} $\mathrm{m}=\mathrm{m}_{0}+\mathrm{m}_{\mathrm{m}}$	$\begin{array}{r} 2.5 \mathrm{~m} \\ 200 \mathrm{~kg} \\ 50 \mathrm{~kg} \\ 25 \mathrm{~kg} \\ 225 \mathrm{~kg} \end{array}$
	Eccentric radius Stroke Rpm on trough Gravity acceleration Oscillating machine factor Acceleration Total spring value of system	R $\begin{aligned} & s w=2 \cdot R \\ & n_{s} \\ & g \\ & K \\ & a=K \cdot g \\ & c_{+} \end{aligned}$	$\begin{aligned} & 12 \mathrm{~mm} \\ & 24 \mathrm{~mm} \\ & 340 \mathrm{~min}^{-1} \\ & 9.81 \mathrm{~m}^{2} \mathrm{~s}^{2} \\ & 1.6 \\ & 1.6 \mathrm{~g} \\ & 285 \mathrm{~N} / \mathrm{mm} \end{aligned}$
	Distance between rockers max. Quantity of rockers Load per rocker Selection osc. elements (e. g.) Selection ROSTA-elements: Center distance of elements	$L_{\text {max }}$ z G J, AR, AS-P A	$\begin{aligned} & 1.5 \mathrm{~m} \\ & 6 \\ & 368 \mathrm{~N} \\ & \mathbf{1 2 \times A U} \mathbf{2 7} \\ & 200 \mathrm{~mm} \end{aligned}$
这	Acceleration force Selection drive head Drive capacity approx.	P	$\begin{gathered} 3423 \mathrm{~N} \\ \mathbf{1 \times \mathbf { S T }} \mathbf{4 5} \\ 1.0 \mathrm{~kW} \end{gathered}$
읃 을 或 n	Dynamic torque Dynamic spring value per rocker Dynamic spring value of all rockers Resonant ability factor	Md_{d} C_{d} $z \cdot C_{d}$ i	$\begin{aligned} & 2.6 \mathrm{Nm} /{ }^{\circ} \\ & 7.4 \mathrm{~N} / \mathrm{mm} \\ & 44.7 \mathrm{~N} / \mathrm{mm} \\ & 0.16 \end{aligned}$

Calculation formulas

Oscillating machine factor

$$
K=\frac{\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot R}{g \cdot 1000}=\frac{n_{s}^{2} \cdot R}{894^{\prime} 500}
$$

Total spring value (machine)

$c_{t}=m \cdot\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot 0.001$

Quantity of rockers

$z=$ round up $\left(\frac{L}{L \max }+1\right) \cdot 2$

Load per rocker

$G=\frac{m \cdot g}{z}$

Acceleration force (ST selection)

$F=m \cdot R \cdot\left(\frac{2 \pi}{60} \cdot n_{s}\right)^{2} \cdot 0.001=c_{t} \cdot R$

Drive capacity approx.

$\mathrm{P}=\frac{\mathrm{F} \cdot \mathrm{R} \cdot \mathrm{n}_{\mathrm{s}}}{9550 \cdot 1000 \cdot \sqrt{2}}$

Dynamic spring value per rocker
$c_{d}=\frac{M d_{d} \cdot 360 \cdot 1000}{A^{2} \cdot \pi}$

Resonant ability factor

$i=\frac{z \cdot c_{d}}{c_{t}}$

* the following factors have to be considered by the definition of the material coupling:
- high coupling factor or sticking of wet and humid material
- possible stemming of the trough

2. One mass system with spring accumulators: Calculation

Calculation analog chapter 1 with following additions:

Quantity	z_{s}	2
Dyn. spring value per item	c_{s}	$100 \mathrm{~N} / \mathrm{mm}$
Dyn. spring value of all items	$\mathrm{z}_{\mathrm{s}} \cdot \mathrm{c}_{\mathrm{s}}$	$200 \mathrm{~N} / \mathrm{mm}$
Resonant ability factor	i_{s}	0.86
Selection of accumulators	2x cons. of 2x DO-A 45 $\mathbf{~ \mathbf { 8 0 }}$	

Dyn. spring value per item Dyn. spring value of all items Resonant ability factor
$2 x$ cons. of $2 x$ DO-A 45×80

Resonant ability factor with accumulators

$\mathrm{i}_{\mathrm{s}}=\frac{\mathrm{z} \cdot \mathrm{c}_{\mathrm{d}}+\mathrm{z}_{\mathrm{s}} \cdot \mathrm{c}_{\mathrm{s}}}{\mathrm{c}_{\mathrm{t}}}$
By a resonant ability factor $\mathrm{i}_{\mathrm{s}} \geq 0.8$ the system is usually titled "natural frequency shaker".

Technology

3. One mass shaker conveyor systems: Installation instructions

Distance between rockers $\mathbf{L}_{\text {max }}$:

- Usually, the distance between the rocker arms on the trough alongside is up to 1.5 meters, depending on the stiffness of the trough.
- By trough widths $>1.5 \mathrm{~m}$ we do recommend to provide the trough bottom side with a third, centrical row of rocker arms for stability reasons.

Mounting position drive head ST:

For one mass shaker systems it is recommendable to position the drive head slightly ahead of the center of gravity of the trough, towards the discharge end.

Rocker mounting angle $\boldsymbol{\beta}$:

According to the relevant processing function of the shaker conveyor, the rocker arms are positioned at mounting angles between 10° to 30° in relation to the perpendicular line. (The ideal combination of fast conveying speed with high material throw is given by a rocker inclination angle of 30°.) The power input position of the drive-rod from the eccentric drive should stay at right angles to the rocker arms, this orthogonal positioning offers a harmonic course of the drive system.

Angle of oscillation α :

The machine parameters, angle of oscillation and revolutions should be determined in the admissible area of operations (see chapter 5).

Screw quality:

The screw quality should be grade 8.8 secured by the required tightening moment.

Depth of thread engagement Z:

The depth of engagement should be at least 1.5 x the thread nominal width.

4. Average material speed on shakers \mathbf{v}_{m}

Main influence factors

- layer height of material
- property trough bottom (slipresistance)
- mounting angle β of the rockers
- feeding capability of the material depending on size, form and humidity of the grains, e.g. very dry and fine grained material is submitted to slippage factors up to 30%.

Example: One mass system with eccentric drive

Out of the intersection point
$\mathbf{R}=\mathbf{1 2} \mathbf{~ m m}$ and the revolutions
$\mathbf{n}_{\mathrm{s}}=\mathbf{3 4 0} \mathbf{~ m i n}^{-1}$ is resulting a theoretical material speed of $\mathbf{v}_{\mathrm{m}}=\mathbf{1 2 ~ \mathbf { m }} / \mathbf{m i n}$ or $\mathbf{2 0} \mathbf{~ c m} / \mathrm{sec}$.

By acceleration factors $\mathbf{K} \boldsymbol{>} \mathbf{2}$ and rocker mounting angles of $\beta=3 \mathbf{3 0}^{\circ}$ (to the perpendicular line) the vertical acceleration is getting bigger than 1 g , therefore the material starts lifting from the trough bottom = material throw.

Technology

5. Maximum rocker load G, revolutions n_{s} and angle of oscillation α

Size	max. load capacity per rocker [N]				max. revolutions $\mathrm{n}_{\mathrm{s}}\left[\mathrm{min}^{-1}\right]{ }^{*}$	
(e.g. AU 15)	$\mathrm{K}<2$	$\mathrm{~K}=2$	$\mathrm{~K}=3$	$\mathrm{~K}=4$	$\alpha \pm 5^{\circ}$	$\alpha \pm 6^{\circ}$
15	100	75	60	50	640	480
18	200	150	120	100	600	450
27	400	300	240	200	560	420
38	800	600	500	400	530	390
45	$1^{\prime} 600$	$1^{\prime} 200$	$1^{\prime} 000$	800	500	360
50	$2^{\prime} 500$	$1^{\prime} 800$	$1^{\prime} 500$	$1^{\prime} 200$	470	340
60	$5^{\prime} 000$	$3^{\prime} 600$	$3^{\prime} 000$	$2^{\prime} 400$	440	320

Please contact ROSTA for the permissible load indications by higher accelerations and for rocker elements offering higher load capacities. Usually are the revolutions n_{s} between 300 to $600 \mathrm{~min}^{-1}$ and the oscillation angles max. $\pm 6^{\circ}$.

* basics: "permissible frequencies" in the Technology part of the ROSTA catalogue.

The angle of oscillation α of each oscillating component (rockers accumulators and drive head) has to be settled within the permissible range (n_{s} and α).

Calculation oscillation angle for rockers
Eccentric radius $R[m m]$
Center distance A [mm]
Oscillation angle $\alpha \pm\left[{ }^{\circ}\right]$
$\alpha=\arctan \left(\frac{R}{A}\right)$

6. Two mass shaker systems with direct reaction force-compensation

- Maximum acceleration forces of approx. 5 g , shaker lengths up to 20 meters
- Equipped with ROSTA double rockers AD-P, AD-C and/or made out of AR elements
- Ideal compensation when $\mathrm{m}_{1}=\mathrm{m}_{2}$
- Element selection analogue chapter 1, but with load of the two masses: Actuated mass (+ material coupling of feeding mass) $m_{1}[\mathrm{~kg}]$
Driven mass (+ material coupling of feeding mass) $m_{2}[\mathrm{~kg}]$
Total oscillating mass

$$
\mathrm{m}=\mathrm{m}_{1}+\mathrm{m}_{2} \quad[\mathrm{~kg}]
$$

Dynamic spring value c_{d} per double rocker

$$
\mathrm{c}_{\mathrm{d}}=\frac{3 \cdot \mathrm{Md}_{\mathrm{d}} \cdot 360 \cdot 1000}{2 \cdot \mathrm{~A}^{2} \cdot \pi}[\mathrm{~N} / \mathrm{mm}]
$$

- Calculation of c_{t} and F based on the total mass (m_{1} and m_{2})
- Power input from eccentric drive with ST arbitrary on m_{1} or m_{2} at any point alongside m_{1} or m_{2}
- On demand, special double rocker arms with varying center distances A are available as "customized rockers"

The $\mathbf{9}$ installation steps for a two mass system with double rocker arms:

1. All fixation holes for the rockers in trough, counter-mass and machine frame have to be drilled very accurately previous the final machine assembling.
2. Installation of the middle elements of the rocker arms on the central machine frame, all inclination angles duly adjusted (e.g. 30°), tightening of the screws with required fastening torque.
3. Lifting of the counter-mass with accurate horizontal alignment until the bores in the counter-mass frame stay congruent with the bore holes of the lower element. Jamming of the counter-mass with e.g. wooden chocks.
4. Tightening of the fixation screws on counter-mass with required fastening torque.
5. Inserting of the feeding trough into machine frame structure. Accurate horizontal alignment until the bores in the trough stay congruent with the bore holes of the upper element. Jamming of the trough with e.g. wooden chocks.
6. Tightening of the fixation screws on trough with required fastening torque.
7. Installation of the driving rod with drive head ST in "neutral" position i.e. eccentric drive should stay in between the two stroke ends. Length adjustment of the driving rod and tightening of the counternuts.
8. Removal of the jamming chocks under counter-mass and trough.
9. Test start of the shaker conveyor.

Drive Heads

 Type ST

ST 50-2

ST 60-3 and ST 80

$\mathrm{n}_{\mathrm{s}}=$ max. revolutions by oscillation angle $\pm 5^{\circ}$; if osc. angle is below, higher rpm's are applicable, consult "permissible frequencies" in the Technology part of the ROSTA general catalogue.
$\mathrm{F}_{\text {max. }} \rightarrow$ Calculation of the acceleration force F on page 2.22.

Length of driving rod $A_{s t}$ and eccentric radius \mathbf{R}

To follow the guidelines of the permissible frequencies the angle of oscillation $\alpha_{S T}$ should not exceed $\pm 5.7^{\circ}$. This angle is corresponding to the ratio R : $A_{\text {St }}$ of $1: 10$.

Calculation of the oscillation angle for ST
Eccentric radius
Center distance
Oscillation angle

R [mm]

$A_{\text {ST }}[\mathrm{mm}]$
$\alpha_{S T} \pm\left[{ }^{\circ}\right]$
$\alpha_{S T}=\arcsin \left(\frac{R}{A_{S T}}\right)$

Installation guidelines

For the installation of the drive heads type ST under the trough-bottom it requires a stiff structure, ideally a heavy and rather long frame construction surrounding the power input from the eccentric drive. Too light and too short mounting structures for the drive heads could be submitted to early material fatigue and generate cracks on the feeding trough. The drive heads have to be installed fully free of play (frictional connection). By multiple power transmission with several drive heads, all driving rods have to be adjusted on exactly the same length. The force transmission from the eccentric drive should stay right-angled to the guiding rocker arms. This supports a smooth course of the shaker.

Series connection of 4 pcs. ST 50

Further basic information and calculations on pages 2.22-2.24.

